Buckling and Vibration of Laminated Composite Plates Using Various Plate Theories

J. N. Reddy* and A. A. Khdeir† Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Analytical and finite-element solutions of the classical, first-order, and third-order laminate theories are developed to study the buckling and free-vibration behavior of cross-ply rectangular composite laminates under various boundary conditions. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies and critical buckling loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory overpredicts natural frequencies and buckling loads.

I. Introduction

THE analyses of laminated composite plates are often based on equivalent single-layer theories, commonly referred to as laminate plate theories. These theories are derived from the three-dimensional elasticity equations by approximating the thickness variation of the displacement field. In the classical laminate plate theory (CPT) it is assumed that (the Kirchhoff hypothesis) 1) the straight lines do not undergo axial deformation (i.e., inextensible); 2) straight lines perpendicular to the midsurface (i.e., transverse normals) before deformation remain straight after deformation, and 3) the straight lines rotate such that they remain perpendicular to the midsurface after deformation.

The first two assumptions imply that the transverse displacement is independent of the transverse (or thickness) coordinate and the transverse normal strain is zero. The third assumption results in zero transverse shear strains. Thus, in the classical plate theory all transverse stresses are neglected.

Shear deformation theories are those in which the transverse shear stresses are accounted for. Such theories can be used to describe the kinematics of deformation of laminated plates accurately. The first-order shear-deformation theory (FSDT) (see Reddy¹⁻³ and Reddy and Chao⁴), commonly known as the Mindlin plate theory, accounts for layerwise constant states of transverse shear stresses (i.e., assumption 3 is removed), whereas the higher-order shear-deformation theory (HSDT) advanced by Reddy^{1,5,6} and Reddy and Phan⁷ accounts for layerwise parabolic distribution of transverse shear stresses (i.e., assumptions 2 and 3 are removed). The exact solution of laminated plate theories is often limited to rectangular geometries, simply supported boundary conditions, and linear theories (see Refs. 1, 4-12). Finite-element analysis of the classical theory, and first-order and third-order shear deformation laminate theories for arbitrary loading, geometry, and boundary conditions, have been known (see Refs. 13-19). Recently, the authors have developed the Lévytype solutions to various laminate theories applied to rectangular laminates under various types of boundary conditions.²⁰ This study dealt with the bending of composite laminates, and analytical solutions for buckling and vibration for various boundary conditions were not reported there.

In the present study, exact and finite-element solutions for the free vibration and buckling of cross-ply rectangular composite laminates are developed using the classical, first-order, and third-order laminate plate theories under various

boundary conditions. A comparison of the fundamental frequencies and critical buckling loads predicted by the three theories is presented.

II. Governing Equations

A. Kinematic Relations

The third-order shear deformation theory used in the present study is based on the following representation of the displacement field across the plate thickness^{5,6}:

$$u_1(x,y,z,t) = u + z \left[\phi_1 - \alpha \frac{4}{3} \left(\frac{z}{h} \right)^2 \left(\phi_1 + \frac{\partial w}{\partial x} \right) \right]$$
 (1a)

$$u_2(x,y,z,t) = v + z \left[\phi_2 - \alpha \frac{4}{3} \left(\frac{z}{h} \right)^2 \left(\phi_2 + \frac{\partial w}{\partial y} \right) \right]$$
 (1b)

$$u_3(x, y, z, t) = w \tag{1c}$$

Here u, v, and w denote the displacement components in the x, y, and z directions, respectively, at time t; and ϕ_1 and ϕ_2 are the rotations of the transverse normals about the y and x axes, respectively. All of the generalized displacements (u,v,w,ϕ_1,ϕ_2) are functions of x, y, and t. Note that the displacement field of the first-order shear deformation theory can be deduced from Eq. (1) by setting $\alpha = 0$. The displacement field of the classical laminate theory can be obtained from that of the first-order theory by setting

$$\phi_1 = -\frac{\partial w}{\partial x}, \qquad \phi_2 = -\frac{\partial w}{\partial y}$$
 (2)

B. Equations of Motion

The equations of motion appropriate for the displacement field, Eq. (1), can be derived using the dynamic version of the principle of virtual displacements¹:

$$\frac{\partial N_1}{\partial x} + \frac{\partial N_6}{\partial y} = I_1 \ddot{u} + \bar{I}_2 \ddot{\phi}_1 - \alpha c_2 I_4 \frac{\partial \ddot{w}}{\partial x}$$
 (3a)

$$\frac{\partial N_6}{\partial x} + \frac{\partial N_2}{\partial y} = I_1 \ddot{v} + \bar{I}_2 \ddot{\phi}_2 - \alpha c_2 I_4 \frac{\partial \ddot{w}}{\partial y}$$
 (3b)

(3c)

$$\begin{split} &\frac{\partial \hat{Q}_{1}}{\partial x} + \frac{\partial \hat{Q}_{2}}{\partial y} + \bar{N}_{1} \frac{\partial^{2} w}{\partial x^{2}} + \bar{N}_{2} \frac{\partial^{2} w}{\partial y^{2}} + \bar{N}_{6} \frac{\partial^{2} w}{\partial x \partial y} \\ &+ q + \alpha c_{2} \left(\frac{\partial^{2} P_{1}}{\partial x^{2}} + 2 \frac{\partial^{2} P_{6}}{\partial x \partial y} + \frac{\partial^{2} P_{2}}{\partial y^{2}} \right) \\ &= I_{1} \ddot{w} - \alpha c_{2}^{2} I_{7} \left(\frac{\partial^{2} \ddot{w}}{\partial x^{2}} + \frac{\partial^{2} \ddot{w}}{\partial y^{2}} \right) + \alpha c_{2} \left[I_{4} \left(\frac{\partial \ddot{u}}{\partial x} + \frac{\partial \ddot{v}}{\partial y} \right) \right] \\ &+ \bar{I}_{5} \left(\frac{\partial \ddot{\phi}_{1}}{\partial x} + \frac{\partial \ddot{\phi}_{2}}{\partial y} \right) \right] \end{split}$$

Received June 2, 1988; revision received Oct. 7, 1988. Copyright © 1989 by J. N. Reddy and A. A. Khdeir. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

^{*}Clifton C. Garvin Professor.

[†]Assistant Professor.

$$\frac{\partial \hat{M}_1}{\partial x} + \frac{\partial \hat{M}_6}{\partial y} - \hat{Q}_1 = \bar{I}_2 \ddot{u} + \bar{I}_3 \ddot{\phi}_1 - \alpha c_2 \bar{I}_5 \frac{\partial \ddot{w}}{\partial x}$$
(3d)

$$\frac{\partial \hat{M}_6}{\partial x} + \frac{\partial \hat{M}_2}{\partial y} - \hat{Q}_2 = \bar{I}_2 \ddot{v} + \bar{I}_3 \ddot{\phi}_2 - \alpha c_2 \bar{I}_5 \frac{\partial \ddot{w}}{\partial y}$$
 (3e)

where $c_1 = 4/h^2$, $c_2 = c_1/3$, and

$$\hat{M}_i = M_i - \alpha c_2 P_i, \qquad \hat{Q}_i = Q_i - \alpha c_1 R_i \tag{4}$$

and the superposed dot denotes differentiation with respect to time, q is the distributed transverse load, and (N_i, M_i, P_i) are the stress resultants

$$(N_i, M_i, P_i) = \sum_{m=1}^{L} \int_{z_m}^{z_{m+1}} \sigma_i^{(m)}(1, z, z^3) dz, \qquad i = 1, 2, 6 \quad (5a)$$

$$(Q_1, R_1) = \sum_{m=1}^{L} \int_{z_m}^{z_{m+1}} \sigma_s^{(m)}(1, z^2) dz$$
 (5b)

$$(Q_2, R_2) = \sum_{m=1}^{L} \int_{z_m}^{z_{m+1}} \sigma_4^{(m)}(1, z^2) dz$$
 (5c)

Here \overline{N}_1 , \overline{N}_2 , and \overline{N}_6 are the constant in-plane edge loads, and L denotes the total number of layers in the laminate. The inertias I_i (i=1,2,3,4,5,7) are defined by

$$(I_1, I_2, I_3, I_4, I_5, I_7) = \sum_{m=1}^{L} \int_{z_m}^{z_{m+1}} \rho^{(m)}(1, z, z^2, z^3, z^4, z^6) dz \quad (6a)$$

where $\rho^{(m)}$ is the material density of the mth layer,

$$\bar{I}_2 = I_2 - \alpha c_2 I_4, \qquad \bar{I}_5 = I_5 - \alpha c_2 I_7$$

$$\bar{I}_3 = I_3 - 2\alpha c_2 I_5 + \alpha c_2^2 I_7 \qquad (6b)$$

The force and moment resultants can be expressed in terms of the displacements using the laminate constitutive equations¹:

$$N_{i} = A_{i1} \frac{\partial u}{\partial x} + A_{i2} \frac{\partial v}{\partial y} + A_{i6} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \hat{B}_{i1} \frac{\partial \phi_{1}}{\partial x} + \hat{B}_{i2} \frac{\partial \phi_{2}}{\partial y}$$

$$+ \hat{B}_{i6} \left(\frac{\partial \phi_{1}}{\partial y} + \frac{\partial \phi_{2}}{\partial x} \right) - \alpha c_{2} \left(E_{i1} \frac{\partial^{2} w}{\partial x^{2}} + E_{i2} \frac{\partial^{2} w}{\partial y^{2}} + 2E_{i6} \frac{\partial^{2} w}{\partial x \partial y} \right)$$

$$(7a)$$

$$M_{i} = B_{i1} \frac{\partial u}{\partial x} + B_{i2} \frac{\partial v}{\partial y} + B_{i6} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \hat{D}_{i1} \frac{\partial \phi_{1}}{\partial x} + \hat{D}_{i2} \frac{\partial \phi_{2}}{\partial y}$$

$$+ \hat{D}_{i6} \left(\frac{\partial \phi_{1}}{\partial y} + \frac{\partial \phi_{2}}{\partial x} \right) - \alpha c_{2} \left(F_{i1} \frac{\partial^{2} w}{\partial x^{2}} + F_{i2} \frac{\partial^{2} w}{\partial y^{2}} + 2F_{i6} \frac{\partial^{2} w}{\partial x \partial y} \right)$$

$$(7b)$$

$$P_{i} = E_{i1} \frac{\partial u}{\partial x} + E_{i2} \frac{\partial v}{\partial y} + E_{i6} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$

$$+ \hat{F}_{i1} \frac{\partial \phi_{1}}{\partial x} + \hat{F}_{i2} \frac{\partial \phi_{2}}{\partial y} + \hat{F}_{i6} \left(\frac{\partial \phi_{1}}{\partial y} + \frac{\partial \phi_{2}}{\partial x} \right)$$

$$- \alpha c_{2} \left(H_{i1} \frac{\partial^{2} w}{\partial x^{2}} + H_{i2} \frac{\partial^{2} w}{\partial x^{2}} + 2H_{i6} \frac{\partial^{2} w}{\partial x \partial y} \right)$$

$$(7c)$$

$$Q_1 = \hat{A}_{55} \left(\phi_1 + \frac{\partial w}{\partial x} \right) + \hat{A}_{45} \left(\phi_2 + \frac{\partial w}{\partial y} \right)$$
 (7d)

$$Q_2 = \hat{A}_{45} \left(\phi_1 + \frac{\partial w}{\partial x} \right) + \hat{A}_{44} \left(\phi_2 + \frac{\partial w}{\partial y} \right)$$
 (7e)

$$R_1 = \hat{D}_{55} \left(\phi_1 + \frac{\partial w}{\partial x} \right) + \hat{D}_{45} \left(\phi_2 + \frac{\partial w}{\partial y} \right)$$
 (7f)

$$R_2 = \hat{D}_{45} \left(\phi_1 + \frac{\partial w}{\partial x} \right) + \hat{D}_{44} \left(\phi_2 + \frac{\partial w}{\partial y} \right) \tag{7g}$$

where

$$\hat{B}_{ij} = B_{ij} - \alpha c_2 E_{ij}, \qquad \hat{D}_{ij} = D_{ij} - \alpha c_2 F_{ij},$$

$$\hat{F}_{ij} = F_{ij} - \alpha c_2 H_{ij}, \qquad i, j = 1, 2, 6$$
(8a)

$$\hat{A}_{ij} = A_{ij} - \alpha c_1 D_{ij}, \qquad \hat{D}_{ij} = D_{ij} - \alpha c_1 F_{ij}, \qquad i, j = 4,5$$
 (8b)

and A_{ij} , B_{ij} ,... are the laminate stiffnesses.

For antisymmetric cross-ply laminates, the following laminate stiffnesses are identically zero:

$$A_{16} = A_{26} = B_{16} = B_{26} = D_{16} = D_{26} = A_{45} = 0$$
 (9a)

$$E_{16} = E_{26} = F_{16} = F_{26} = H_{16} = H_{26} = D_{45} = F_{45} = 0$$
 (9b)

III. The Lévy-Type Solution

A. Solution Procedure

A generalized Lévy-type solution, in conjunction with the state-space concept, is used to analyze the free-vibration and buckling problems of antisymmetric cross-ply laminated rectangular plates. The edges (y=0 and y=b) are assumed to be simply supported, while the remaining ones $(x=\pm a/2)$ may have arbitrary combinations of free, clamped, and simply supported edge conditions. We express the generalized displacements as products of undetermined functions and known trigonometric functions so as to satisfy identically the simply supported boundary conditions at y=0 and y=b:

$$u = w = \phi_1 = N_2 = M_2 = P_2 = 0,$$
 for HSDT (10a)

$$u = w = \phi_1 = N_2 = M_2 = 0$$
, for FSDT (10b)

$$u = w = N_2 = M_2 = 0$$
, for CPT (10c)

For the free-vibration case, we set the load terms \bar{N}_1 , \bar{N}_2 , and \bar{N}_6 , and q in the governing equations to zero, and represent the displacement quantities as

$$\begin{cases} u(x,y,t) \\ v(x,y,t) \\ w(x,y,t) \\ \phi_1(x,y,t) \\ \phi_2(x,y,t) \end{cases} = \begin{cases} U_m(x) \sin\beta y \\ V_m(x) \cos\beta y \\ W_m(x) \sin\beta y \\ Y_m(x) \sin\beta y \\ Y_m(x) \cos\beta y \end{cases} e^{i\omega_m t}$$
(11)

Here $\beta \equiv m\pi/b$ and ω_m denotes the eigenfrequency associated with the *m*th eigenmode. The representation (11) is valid for HSDT, FSDT, and CPT.

Substitution of Eq. (11) into Eqs. (7) and the result into Eqs. (3), we obtain five differential equations for HSDT and FSDT and three differential equations for CPT. In order to represent the system of differential equations in the form needed for the state-space solution procedure, the following variables are introduced:

HSDT:

$$Z_1 = U_m,$$
 $Z_2 = U'_m,$ $Z_3 = V_m,$ $Z_4 = V'_m,$ $Z_5 = W_m,$ $Z_6 = W'_m,$ $Z_7 = W''_m,$ $Z_8 = W'''_m,$ $Z_9 = X_m,$ $Z_{10} = X'_m,$ $Z_{11} = Y_m,$ $Z_{12} = Y'_m$ (12)

FSDT:

$$Z_1 = U_m,$$
 $Z_2 = U'_m,$ $Z_3 = V_m,$ $Z_4 = V'_m,$
$$Z_5 = W_m,$$
 $Z_6 = W'_m,$ $Z_7 = X_m$
$$Z_8 = X'_m,$$
 $Z_9 = Y_m,$ $Z_{10} = Y'_m$ (13)

CPT:

$$Z_1 = U_m,$$
 $Z_2 = U'_m,$ $Z_3 = V_m,$ $Z_4 = V'_m,$ $Z_5 = W_m,$ $Z_6 = W'_m$ $Z_7 = W''_m,$ $Z_8 = W''_m$ (14)

where primes over the variables indicate differentiation with respect to x. The differential equations take the form

$$\{Z'\} = [A]\{Z\}$$
 (15)

where the matrix [A] is defined in Appendix A for HSDT, FSDT, and CPT as (12×12) , (10×10) , and (8×8) matrices, respectively.

A formal solution to Eq. (15) is given by 21,22

$${Z(x)} = e^{Ax}{k}$$
 (16)

where $\{k\}$ is a constant column vector associated with the boundary conditions and e^{Ax} is given by

$$e^{Ax} = [S] \begin{bmatrix} e^{\lambda_1 x} & 0 \\ 0 & \ddots & e^{\lambda_n x} \end{bmatrix} [S]^{-1}$$
 (17)

The value of n is 12 for HSDT, 10 for FSDT, and 8 for CPT. Here λ_i denotes the distinct eigenvalues of [A], whereas [S] denotes the matrix of eigenvectors of [A].

Substitution of Eq. (16) into the boundary conditions associated with the remaining two opposite edges $x = \pm a/2$ results in a homogeneous system of equations given by

$$\sum_{j=1}^{n} M_{ij} k_j = 0 (18)$$

where i = 1,12 for HSDT, i = 1,10 for FSDT, and i = 1,8 for CPT. For the nontrivial solution of Eq. (18), the determinant should be zero:

$$|M_{ii}| = 0 \tag{19}$$

Equation (19) gives the eigenfrequencies or the buckling loads.

B. Boundary Conditions

The boundary conditions for simply supported (S), clamped (C), and free (F) at the edges $x = \pm a/2$ for the three theories are

HSDT:

S:
$$v = w = \phi_2 = N_1 = M_1 = P_1 = 0$$

C:
$$u = v = w = \frac{\partial w}{\partial x} = \phi_1 = \phi_2 = 0$$

F:
$$N_1 = N_6 = M_1 = P_1 = \hat{M}_6 = 0$$

$$\hat{Q}_1 + c_2 \left(\frac{\partial P_1}{\partial x} + \frac{\partial P_6}{\partial y} \right) = 0 \tag{20}$$

FSDT:

S:
$$v = w = \phi_2 = N_1 = M_1 = 0$$

C:
$$u = v = w = \phi_1 = \phi_2 = 0$$

F:
$$N_1 = M_1 = Q_1 = N_6 = M_6 = 0$$
 (21)

CPT:

S:
$$v = w = N_1 = M_1 = 0$$

C: $u = v = w = \frac{\partial w}{\partial x} = 0$
F: $N_1 = M_1 = N_6 = 0$

$$\frac{\partial M_1}{\partial x} + 2 \frac{\partial M_6}{\partial y} = 0$$
 (22)

IV. The Finite-Element Formulation

This section deals with the development of finite-element models of the laminate plate theories. The finite-element model based on the total potential energy principle for the classical laminate theory and the third-order theory requires Hermite cubic or higher-order interpolation functions in the approximation of the transverse deflection. On the other hand, the finite-element model based on the total potential energy principle of the first-order shear deformation theory allows us to use linear or higher-order Lagrange interpolation functions for all displacements. Both of these models are called displacement models.

Let (u,v,w,ϕ_1,ϕ_2) be interpolated by expressions of the form

$$u = \sum_{j=1}^{n} u_{j} \psi_{j}(x, y), \qquad v = \sum_{j=1}^{n} v_{j} \psi_{j}(x, y)$$

$$\phi_{1} = \sum_{j=1}^{n} \phi_{j}^{1} \psi_{j}(x, y), \qquad \phi_{2} = \sum_{j=1}^{n} \phi_{j}^{2} \psi_{j}(x, y)$$

$$w = \sum_{j=1}^{m} \Delta_{j} \hat{\phi}_{j}(x, y)$$
(23)

Here $(u_j, v_j, \phi_j^1, \phi_j^2)$ denote the nodal values of (u, v, ϕ_1, ϕ_2) and Δ_j denote the nodal values of w and its derivatives. For linear Lagrange interpolation of (u, v, ϕ_1, ϕ_2) and Hermite cubic interpolation of w using four-node rectangular elements, we have n = 4 and $m = 16^{23,24}$. In this case, the four nodal values associated with w are

$$w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial^2 w}{\partial x \partial y}$$

The element is called a C^1 element, and it has a total of eight degrees of freedom per node for the third-order theory and six degrees of freedom per node for the classical theory. For the first-order shear deformation theory ($\alpha = 0$), the number of degrees of freedom per node is five.

Substituting Eq. (23) into Eq. (3), we obtain the element

$$\sum_{\alpha=1}^{5} \sum_{i=1}^{n(\beta)} (K_{ij}^{\alpha\beta} \Delta_{j}^{\beta} - \omega^{2} M_{ij}^{\alpha\beta} \Delta_{j}^{\beta}) = 0, \qquad i = 1, 2, ..., n(\alpha) \quad (24)$$

where $\alpha = 1,2,3$; n(1) = n(2) = n(4) = n(5) = 4, and n(3) = 16. The variables Δ_j^{β} , stiffness coefficients $K_{ij}^{\alpha\beta}$ (symmetric), and mass coefficients $M_{ij}^{\alpha\beta}$ (symmetric) are defined by

$$\Delta_{j}^{1} = u_{j}, \quad \Delta_{j}^{2} = v_{j}, \quad \Delta_{j}^{3} = \Delta_{j}, \quad \Delta_{j}^{4} = \phi_{j}^{1}, \quad \Delta_{j}^{5} = \phi_{j}^{2}$$
 (25)

and

$$K_{ij}^{1\alpha} = \int_{\Omega^e} \left(\frac{\partial \psi_i}{\partial x} N_{1j}^{\alpha} + \frac{\partial \psi_i}{\partial y} N_{6j}^{\alpha} \right) dx dy$$

$$K_{ij}^{2\alpha} = \int_{\Omega^e} \left(\frac{\partial \psi_i}{\partial x} N_{6j}^{\alpha} + \frac{\partial \psi_i}{\partial y} N_{2j}^{\alpha} \right) \mathrm{d}x \, \mathrm{d}y$$

Table 1 Effect of degree of orthotropy of the individual layers on the dimensionless fundamental frequency of simply supported antisymmetric square laminates: a/h = 5, $\bar{\omega} = \omega(\rho h^2/E_2)^{V_2}$

		E_1/E_2						
	Number of							
Source	layers	3	10	20	30	40		
Noor ^{34a}		0.25031	0.27938	0.30698	0.32705	0.34250		
HSDT ^b		0.24877	0.27966	0.31297	0.34034	0.36362		
HSDT ^c		0.24868	0.27955	0.31284	0.34020	0.36348		
HSDT ^d	2	0.24868	0.27955	0.31284	0.34020	0.36348		
FSDT ^c		0.24834	0.27757	0.30824	0.33284	0.35333		
FSDT ^d		0.24834	0.27757	0.30824	0.33284	0.35333		
CPT^c		0.27082	0.30968	0.35422	0.39335	0.42884		
CPT ^d		0.27082	0.30968	0.35422	0.39335	0.42884		
Noora		0.26182	0.32578	0.37622	0.40660	0.42719		
HSDT ^b		0.26012	0.32791	0.38515	0.42148	0.44694		
HSDT°		0.26003	0.32782	0.38506	0.42139	0.44686		
HSDT ^d	4	0.26003	0.32782	0.38506	0.42139	0.44686		
FSDT°	,	0.26017	0.32898	0.38754	0.42479	0.45083		
FSDT ^d		0.26017	0.32898	0.38754	0.42479	0.45083		
CPT°		0.28676	0.38877	0.49907	0.58900	0.66690		
CPT ^d		0.28676	0.38877	0.49907	0.58900	0.66690		
Noora		0.26440	0.33657	0.39359	0.42783	0.45091		
HSDT ^b		0.26231	0.33630	0.39681	0.43427	0.46012		
HSDT°		0.26223	0.33621	0.39672	0.43419	0.46005		
HSDT ^d	6	0.26223	0.33621	0.39672	0.43419	0.46005		
FSDT ^c	Ū	0.26228	0.33673	0.39771	0.43531	0.46105		
FSDT ^d		0.26228	0.33673	0.39771	0.43531	0.46105		
CPT°		0.28966	0.40215	0.52234	0.61963	0.70359		
CPT ^d		0.28966	0.40215	0.52234	0.61963	0.70359		
Noora		0.26583	0.34250	0.40337	0.44011	0.46498		
HSDT ^b		0.26345	0.34059	0.40278	0.44086	0.46699		
HSDT°		0.26337	0.34050	0.40270	0.44079	0.46692		
HSDT ^d	10	0.26337	0.34050	0.40270	0.44079	0.46692		
FSDT°	10	0.26335	0.34053	0.40255	0.44023	0.46577		
FSDT ^d		0.26335	0.34053	0.40255	0.44023	0.46577		
CPT°		0.20333	0.34033	0.40233	0.63489	0.72184		
CPT ^d		0.29115	0.40888	0.53397	0.63489	0.72184		

^aResults obtained by applying a finite-difference scheme to the equations of the three-dimensional elasticity theory. ^bResults obtained using the finite-element solution. ¹⁹ ^cResults reported in Ref. 19 using the Navier solution. ^dResults obtained with the exact solution developed in this paper.

$$\begin{split} K_{ij}^{3\alpha} &= \int_{\Omega^{e}} \left[\frac{\partial \hat{\phi}_{i}}{\partial x} \hat{Q}_{1j}^{\alpha} + \frac{\partial \hat{\phi}_{i}}{\partial y} \hat{Q}_{2j}^{\alpha} - c_{2} \left(\frac{\partial^{2} \hat{\phi}_{i}}{\partial x^{2}} P_{1j}^{\alpha} + 2 \frac{\partial^{2} \hat{\phi}_{i}}{\partial x \partial y} P_{6j}^{\alpha} \right) \right] dx dy \\ &+ \frac{\partial^{2} \hat{\phi}_{i}}{\partial y^{2}} P_{2j}^{\alpha} \right] dx dy \\ K_{ij}^{4\alpha} &= \int_{\Omega^{e}} \left(\frac{\partial \psi_{i}}{\partial x} \hat{M}_{1j}^{\alpha} + \frac{\partial \psi_{i}}{\partial y} \hat{M}_{6j}^{\alpha} + \psi_{i} \hat{Q}_{1j}^{\alpha} \right) dx dy \\ K_{ij}^{5\alpha} &= \int_{\Omega^{e}} \left(\frac{\partial \psi_{i}}{\partial x} \hat{M}_{6j}^{\alpha} + \frac{\partial \psi_{i}}{\partial y} \hat{M}_{2j}^{\alpha} + \psi_{i} \hat{Q}_{2j}^{\alpha} \right) dx dy \\ M_{ij}^{11} &= I_{1} S_{ij}^{0}, \qquad M_{ij}^{12} &= 0, \qquad M_{ij}^{13} &= -\alpha c_{2} I_{4} S_{ij}^{0x} \\ M_{ij}^{14} &= I_{2} S_{ij}^{0}, \qquad M_{ij}^{15} &= 0, \qquad M_{ij}^{22} &= I_{1} S_{ij}^{0}, \\ M_{ij}^{23} &= -\alpha c_{2} I_{4} S_{ij}^{0y}, \qquad M_{ij}^{24} &= 0, \qquad M_{ij}^{25} &= I_{2} S_{ij}^{0} \\ M_{ij}^{33} &= I_{1} S_{ij}^{1} + \alpha c_{2}^{2} I_{7} (S_{ij}^{xx} + S_{ij}^{xy}) \\ M_{ij}^{34} &= \bar{I}_{5} S_{ij}^{0x}, \qquad M_{ij}^{35} &= \bar{I}_{5} S_{ij}^{0y} \\ M_{ij}^{44} &= \bar{I}_{3} S_{ij}^{0}, \qquad M_{ij}^{45} &= 0, \qquad M_{ij}^{55} &= \bar{I}_{3} S_{ij}^{0} \end{split}$$

where

$$S_{ij}^{0} = \int_{\Omega^{e}} \psi_{i} \psi_{j} \, dx \, dy, \qquad S_{ij}^{0x} = \int_{\Omega^{e}} \psi_{i} \frac{\partial \widehat{\phi}_{j}}{\partial x} \, dx \, dy$$

Table 2 Effect of degree of orthotropy of the individual layers on the dimensionless critical buckling loads of simply supported antisymmetric square laminates: $\bar{N}_1/\bar{N}_1b^2/(E_2h^3), \bar{N}^2=0,~a/h=10$

Source layers 3 10 20 30 40				= = = = = = = = = = = = = = = = = = = =	E_1/E_2		*******
HSDTb 4.7769 6.2756 8.1198 9.8751 11.569 HSDTc 4.7749 6.2721 8.1151 9.8695 11.563 HSDTd 2 4.7749 6.2721 8.1151 9.8695 11.563 FSDTc 4.7718 6.2465 8.0423 9.7347 11.353 FSDTd 4.7718 6.2465 8.0423 9.7347 11.353 CPTc 5.0338 6.7033 8.8158 10.891 12.957 CPTd 5.0338 6.7033 8.8158 10.891 12.957 Noora 5.1738 9.0164 13.743 17.783 21.280 HSDTb 5.254 9.2344 14.258 18.671 22.582 HSDTd 4 5.2523 9.2315 14.254 18.667 22.579 FSDTd 5.2543 9.2552 14.332 18.815 22.806 CPTe 5.5738 10.295 16.988 23.675 30.359 Noora 5.267 <th< th=""><th>Source</th><th>Number of layers</th><th></th><th>10</th><th>20</th><th>30</th><th>40</th></th<>	Source	Number of layers		10	20	30	40
HSDTc 4.7749 6.2721 8.1151 9.8695 11.563 HSDTd 2 4.7749 6.2721 8.1151 9.8695 11.563 FSDTc 4.7718 6.2465 8.0423 9.7347 11.353 FSDTd 4.7718 6.2465 8.0423 9.7347 11.353 CPTc 5.0338 6.7033 8.8158 10.891 12.957 CPTd 5.0338 6.7033 8.8158 10.891 12.957 Noora 5.1738 9.0164 13.743 17.783 21.280 HSDTb 5.254 9.2344 14.258 18.671 22.582 HSDTc 5.2523 9.2315 14.254 18.667 22.579 HSDTc 5.2543 9.2552 14.332 18.815 22.806 FSDTd 5.2543 9.2552 14.332 18.815 22.806 CPTc 5.5738 10.295 16.988 23.675 30.359 Noora 5.267 9.6051	Noor ^{35a}		4.6948	6.1181	7.8196	9.3746	10.817
HSDTd 2 4.7749 6.2721 8.1151 9.8695 11.563 FSDTc 4.7718 6.2465 8.0423 9.7347 11.353 FSDTd 4.7718 6.2465 8.0423 9.7347 11.353 CPTc 5.0338 6.7033 8.8158 10.891 12.957 CPTd 5.0338 6.7033 8.8158 10.891 12.957 Noora 5.1738 9.0164 13.743 17.783 21.280 HSDTb 5.254 9.2344 14.258 18.671 22.582 HSDTc 5.2523 9.2315 14.254 18.667 22.579 HSDTd 4 5.2523 9.2315 14.254 18.667 22.579 FSDTc 5.2543 9.2552 14.332 18.815 22.806 CPTc 5.5738 10.295 16.988 23.675 30.359 Noora 5.267 9.6051 15.001 19.6394 23.669 HSDTb 5.344 <th< td=""><td>$HSDT^b$</td><td></td><td>4.7769</td><td>6.2756</td><td>8.1198</td><td>9.8751</td><td>11.569</td></th<>	$HSDT^b$		4.7769	6.2756	8.1198	9.8751	11.569
FSDT°					8.1151	9.8695	11.563
FSDT ^d 4.7718 6.2465 8.0423 9.7347 11.353 CPT ^c 5.0338 6.7033 8.8158 10.891 12.957 CPT ^d 5.0338 6.7033 8.8158 10.891 12.957 Noor ^a 5.1738 9.0164 13.743 17.783 21.280 HSDT ^b 5.254 9.2344 14.258 18.671 22.582 HSDT ^c 5.2523 9.2315 14.254 18.667 22.579 FSDT ^d 4 5.2523 9.2315 14.254 18.667 22.579 FSDT ^d 5.2543 9.2552 14.332 18.815 22.806 FSDT ^d 5.2543 9.2552 14.332 18.815 22.806 FSDT ^d 5.5738 10.295 16.988 23.675 30.359 CPT ^d 5.5738 10.295 16.988 23.675 30.359 Noor ^a 5.267 9.6051 15.001 19.6394 23.669 HSDT ^b 5.344 9.7788 15.355 20.2038 24.462 HSDT ^c 5.342 9.7762 15.352 20.201 24.460 HSDT ^d 6 5.342 9.7762 15.352 20.201 24.460 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.674 10.960 18.502 26.042 33.582 CPT ^d 5.3882 10.056 15.914 20.986 25.422 HSDT ^c 5.3882 10.056 15.914 20.986 25.422 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232		2	4.7749		8.1151	9.8695	11.563
CPTc CPTd 5.0338 5.0338 6.7033 6.7033 8.8158 8.8158 10.891 10.891 12.957 12.957 Noora HSDTb HSDTc HSDTc HSDTd 5.1738 5.254 9.0164 9.2344 13.743 17.783 21.280 21.280 21.2582 HSDTc HSDTd 5.2523 4.2523 9.2315 9.2315 14.254 18.667 22.579 22.579 22.579 HSDTd HSDTd 4 5.2523 5.2543 9.2552 9.2315 14.254 18.667 22.579 22.579 FSDTd S.2543 9.2552 9.2552 14.332 18.815 22.806 22.8065 CPTc S.5738 10.295 16.988 23.675 23.675 30.359 Noora HSDTb HSDTd 5.267 5.344 9.6051 9.7762 15.001 19.6394 23.669 23.669 HSDTd HSDTd 5.344 9.7788 15.352 15.352 20.201 20.201 24.460 24.577 FSDTd S.342 9.7762 9.7762 15.352 15.352 20.201 20.201 24.460 24.577 FSDTd S.343 9.7893 9.7893 15.394 15.394 20.280 24.577 24.577 FSDTd S.674 10.960 18.502 26.042 23.582 33.582 Noora HSDTb S.3882 10.056 15.914 20.986 25.422 24.964 24.244 HSDTd S.388			4.7718		8.0423	9.7347	11.353
CPT ^d 5.0338 6.7033 8.8158 10.891 12.957 Noor ^a 5.1738 9.0164 13.743 17.783 21.280 HSDT ^b 5.254 9.2344 14.258 18.671 22.582 HSDT ^c 5.2523 9.2315 14.254 18.667 22.579 HSDT ^d 4 5.2523 9.2315 14.254 18.667 22.579 HSDT ^c 5.2543 9.2552 14.332 18.815 22.806 FSDT ^d 5.2543 9.2552 14.332 18.815 22.806 CPT ^c 5.5738 10.295 16.988 23.675 30.359 CPT ^d 5.5738 10.295 16.988 23.675 30.359 CPT ^d 5.344 9.7782 15.355 20.2038 24.462 HSDT ^b 5.344 9.7788 15.355 20.2038 24.462 HSDT ^d 6 5.342 9.7762 15.352 20.201 24.460 HSDT ^d <t< td=""><td></td><td></td><td>4.7718</td><td>6.2465</td><td>8.0423</td><td>9.7347</td><td>11.353</td></t<>			4.7718	6.2465	8.0423	9.7347	11.353
Noora 5.1738 9.0164 13.743 17.783 21.280 HSDTb 5.254 9.2344 14.258 18.671 22.582 HSDTc 5.2523 9.2315 14.254 18.667 22.579 HSDTd 4 5.2523 9.2315 14.254 18.667 22.579 FSDTc 5.2543 9.2552 14.332 18.815 22.806 FSDTd 5.2543 9.2552 14.332 18.815 22.806 CPTc 5.5738 10.295 16.988 23.675 30.359 CPTd 5.5738 10.295 16.988 23.675 30.359 Noora 5.267 9.6051 15.001 19.6394 23.669 HSDTb 5.344 9.7782 15.355 20.2038 24.462 HSDTd 5.342 9.7762 15.352 20.201 24.460 HSDTd 5.343 9.7893 15.394 20.280 24.577 FSDTd 5.674 10.960			5.0338	6.7033	8.8158	10.891	12.957
HSDTb 5.254 9.2344 14.258 18.671 22.582 HSDTc 5.2523 9.2315 14.254 18.667 22.579 HSDTd 4 5.2523 9.2315 14.254 18.667 22.579 FSDTc 5.2543 9.2552 14.332 18.815 22.806 FSDTd 5.2543 9.2552 14.332 18.815 22.806 CPTc 5.5738 10.295 16.988 23.675 30.359 CPTd 5.5738 10.295 16.988 23.675 30.359 Noora 5.267 9.6051 15.001 19.6394 23.669 HSDTb 5.344 9.7788 15.355 20.2038 24.462 HSDTc 5.342 9.7762 15.352 20.201 24.460 HSDTc 5.343 9.7893 15.394 20.280 24.577 CPTc 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 <t< td=""><td>CPT^d</td><td></td><td>5.0338</td><td>6.7033</td><td>8.8158</td><td>10.891</td><td>12.957</td></t<>	CPT ^d		5.0338	6.7033	8.8158	10.891	12.957
HSDTc 5.2523 9.2315 14.254 18.667 22.579 HSDTd 4 5.2523 9.2315 14.254 18.667 22.579 FSDTc 5.2543 9.2552 14.332 18.815 22.806 FSDTd 5.2543 9.2552 14.332 18.815 22.806 CPTc 5.5738 10.295 16.988 23.675 30.359 CPTd 5.5738 10.295 16.988 23.675 30.359 Noora 5.267 9.6051 15.001 19.6394 23.669 HSDTb 5.344 9.7788 15.355 20.2038 24.462 HSDTd 6 5.342 9.7762 15.352 20.201 24.460 FSDTc 5.343 9.7893 15.394 20.280 24.577 CPTe 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 18.502 26.042 33.582 CPTd 5.3882 10.	Noora		5.1738	9.0164	13.743	17.783	21.280
HSDT ^d 4 5.2523 9.2315 14.254 18.667 22.579 FSDT ^c 5.2543 9.2552 14.332 18.815 22.806 FSDT ^d 5.2543 9.2552 14.332 18.815 22.806 CPT ^e 5.5738 10.295 16.988 23.675 30.359 CPT ^d 5.5738 10.295 16.988 23.675 30.359 Noor ^a 5.267 9.6051 15.001 19.6394 23.669 HSDT ^b 5.344 9.7788 15.355 20.2038 24.462 HSDT ^c 5.342 9.7762 15.352 20.201 24.460 HSDT ^d 6 5.342 9.7762 15.352 20.201 24.460 FSDT ^c 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 CPT ^c 5.674 10.960 18.502 26.042 33.582 CPT ^d 5.3899 10.058 15.917 20.9887 24.424 HSDT ^c 5.3882 10.056 15.914 20.986 25.422 HSDT ^d 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232	$HSDT^b$		5.254	9.2344	14.258	18.671	22.582
FSDT° 5.2543 9.2552 14.332 18.815 22.806 FSDT° 5.2543 9.2552 14.332 18.815 22.806 CPT° 5.5738 10.295 16.988 23.675 30.359 CPT° 5.5738 10.295 16.988 23.675 30.359 Noor° 5.267 9.6051 15.001 19.6394 23.669 HSDT° 5.344 9.7788 15.355 20.2038 24.462 HSDT° 5.342 9.7762 15.352 20.201 24.460 HSDT° 5.342 9.7762 15.352 20.201 24.460 FSDT° 5.343 9.7893 15.394 20.280 24.577 FSDT° 5.343 9.7893 15.394 20.280 24.577 FSDT° 5.674 10.960 18.502 26.042 33.582 CPT° 5.674 10.960 18.502 26.042 33.582 Noor° 5.3899 10.058 15.917 20.9887 24.424 HSDT° 5.3882 10.056 15.914 20.986 25.422 HSDT° 5.3884 10.060 15.927 21.008 25.450 FSDT° 5.3884 10.060 15.927 21.008 25.450	HSDT ^c		5.2523	9.2315	14.254	18.667	22.579
FSDT ^d 5.2543 9.2552 14.332 18.815 22.806 CPT ^e 5.5738 10.295 16.988 23.675 30.359 CPT ^d 5.267 9.6051 15.001 19.6394 23.669 HSDT ^b 5.344 9.7788 15.355 20.2038 24.462 HSDT ^c 5.342 9.7762 15.352 20.201 24.460 HSDT ^d 6 5.342 9.7762 15.352 20.201 24.460 FSDT ^e 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 CPT ^e 5.674 10.960 18.502 26.042 33.582 CPT ^d 5.3899 10.058 15.917 20.9887 24.424 HSDT ^b 5.3882 10.056 15.914 20.986 25.422 FSDT ^c 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232	$HSDT^{d}$	4	5.2523	9.2315	14.254	18.667	22.579
CPT° CPT ^c 5.5738 10.295 16.988 23.675 30.359 Noor ^a HSDT ^b 5.344 9.7788 15.355 20.2038 24.462 HSDT ^c HSDT ^d 6 5.342 9.7762 15.352 20.201 24.460 HSDT ^d 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.674 10.960 18.502 26.042 33.582 CPT ^d 5.3899 10.058 15.917 20.9887 24.424 HSDT ^b 5.3882 10.056 15.914 20.986 25.422 HSDT ^c 5.3884 10.060 15.927 21.008 25.450 FSDT ^c 5.3884 10.060 15.927 21.008 25.450 FSDT ^c 5.3884 10.060 15.927 27.254 35.232	FSDT ^c		5.2543	9.2552	14.332	18.815	22.806
CPT ^d 5.5738 10.295 16.988 23.675 30.359 Noor ^a 5.267 9.6051 15.001 19.6394 23.669 HSDT ^b 5.344 9.7788 15.355 20.2038 24.462 HSDT ^c 5.342 9.7762 15.352 20.201 24.460 HSDT ^d 6 5.342 9.7762 15.352 20.201 24.460 FSDT ^c 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.674 10.960 18.502 26.042 33.582 CPT ^c 5.674 10.960 18.502 26.042 33.582 Noor ^a 5.3159 9.9134 15.669 20.6347 24.964 HSDT ^b 5.3899 10.058 15.914 20.986 25.422 HSDT ^d 5.3882 10.056 15.914 20.986 25.422 HSDT ^d 10 5.3882 10.056 15.914 20.986 25.422 FSDT ^d <	FSDT ^d		5.2543	9.2552	14.332	18.815	22.806
Noora 5.267 9.6051 15.001 19.6394 23.669 HSDTb 5.344 9.7788 15.355 20.2038 24.462 HSDTc 5.342 9.7762 15.352 20.201 24.460 HSDTd 6 5.342 9.7762 15.352 20.201 24.460 HSDTc 5.343 9.7893 15.394 20.280 24.577 FSDTd 5.343 9.7893 15.394 20.280 24.577 CPTc 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 18.502 26.042 33.582 Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTd 5.3884 <td< td=""><td>CPT^c</td><td></td><td>5.5738</td><td>10.295</td><td>16.988</td><td>23.675</td><td>30.359</td></td<>	CPT ^c		5.5738	10.295	16.988	23.675	30.359
HSDTb 5.344 9.7788 15.355 20.2038 24.462 HSDTc 5.342 9.7762 15.352 20.201 24.460 HSDTd 6 5.342 9.7762 15.352 20.201 24.460 FSDTc 5.343 9.7893 15.394 20.280 24.577 FSDTd 5.343 9.7893 15.394 20.280 24.577 CPTc 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 18.502 26.042 33.582 Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 <td< td=""><td>CPT^d</td><td></td><td>5.5738</td><td>10.295</td><td>16.988</td><td>23.675</td><td>30.359</td></td<>	CPT ^d		5.5738	10.295	16.988	23.675	30.359
HSDTc 5.342 9.7762 15.352 20.201 24.460 HSDTd 6 5.342 9.7762 15.352 20.201 24.460 FSDTc 5.343 9.7893 15.394 20.280 24.577 FSDTd 5.343 9.7893 15.394 20.280 24.577 CPTc 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 18.502 26.042 33.582 Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 1	Noora		5.267	9.6051	15.001	19.6394	23.669
HSDTd 6 5.342 9.7762 15.352 20.201 24.460 FSDTc 5.343 9.7893 15.394 20.280 24.577 FSDTd 5.343 9.7893 15.394 20.280 24.577 CPTe 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 18.502 26.042 33.582 Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 11.300 19.277 27.254 35.232	HSDT ^b		5.344	9.7788	15.355	20.2038	24.462
FSDT° 5.343 9.7893 15.394 20.280 24.577 FSDT ^d 5.343 9.7893 15.394 20.280 24.577 CPT° 5.674 10.960 18.502 26.042 33.582 CPT ^d 5.674 10.960 18.502 26.042 33.582 Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 11.300 19.277 27.254 35.232	$HSDT^{c}$		5.342	9.7762	15.352	20.201	24.460
FSDT ^d 5.343 9.7893 15.394 20.280 24.577 CPT ^c 5.674 10.960 18.502 26.042 33.582 CPT ^d 5.3159 9.9134 15.669 20.6347 24.964 HSDT ^b 5.3899 10.058 15.917 20.9887 24.424 HSDT ^c 5.3882 10.056 15.914 20.986 25.422 HSDT ^d 10 5.3882 10.056 15.914 20.986 25.422 FSDT ^c 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232	HSDT ^d	6	5.342	9.7762	15.352	20.201	24.460
CPT° 5.674 10.960 18.502 26.042 33.582 CPTd 5.674 10.960 18.502 26.042 33.582 Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 11.300 19.277 27.254 35.232			5.343	9.7893	15.394	20.280	24.577
CPT ^d 5.674 10.960 18.502 26.042 33.582 Noor ^a 5.3159 9.9134 15.669 20.6347 24.964 HSDT ^b 5.3899 10.058 15.917 20.9887 24.424 HSDT ^c 5.3882 10.056 15.914 20.986 25.422 HSDT ^d 10 5.3882 10.056 15.914 20.986 25.422 FSDT ^c 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232			5.343	9.7893	15.394	20.280	24.577
Noora 5.3159 9.9134 15.669 20.6347 24.964 HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 11.300 19.277 27.254 35.232			5.674	10.960	18.502	26.042	33.582
HSDTb 5.3899 10.058 15.917 20.9887 24.424 HSDTc 5.3882 10.056 15.914 20.986 25.422 HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 11.300 19.277 27.254 35.232	CPT ^d		5.674	10.960	18.502	26.042	33.582
HSDT° 5.3882 10.056 15.914 20.986 25.422 HSDT ^d 10 5.3882 10.056 15.914 20.986 25.422 FSDT° 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT° 5.725 11.300 19.277 27.254 35.232	Noora		5.3159	9.9134	15.669	20.6347	24.964
HSDTd 10 5.3882 10.056 15.914 20.986 25.422 FSDTc 5.3884 10.060 15.927 21.008 25.450 FSDTd 5.3884 10.060 15.927 21.008 25.450 CPTc 5.725 11.300 19.277 27.254 35.232	$HSDT^b$		5.3899	10.058	15.917	20.9887	24.424
FSDT ^c 5.3884 10.060 15.927 21.008 25.450 FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232	HSDT ^c		5.3882	10.056	15.914	20.986	25.422
FSDT ^d 5.3884 10.060 15.927 21.008 25.450 CPT ^c 5.725 11.300 19.277 27.254 35.232		10	5.3882	10.056		20.986	25.422
CPT° 5.725 11.300 19.277 27.254 35.232			5.3884	10.060	15.927	21.008	25.450
					15.927	21.008	25.450
CPT ^d 5.725 11.300 19.277 27.254 35.232						27.254	35.232
	CPT^d		5.725	11.300	19.277	27.254	35.232

^aResults obtained by applying a finite-difference scheme to the equations of the three-dimensional elasticity theory. ^bResults obtained using the finite-element solution.¹⁹ ^cResults reported in Ref. 19 using the Navier solution. ^dResults obtained with the exact solution developed in this paper.

$$S_{ij}^{0y} = \int_{\Omega^e} \psi^i \frac{\partial \hat{\phi}_j}{\partial y} \, dx \, dy, \qquad S_{ij}^1 = \int_{\Omega^e} \hat{\phi}_i \hat{\phi}_j \, dx \, dy$$

$$S_{ij}^{xx} = \int_{\Omega^e} \frac{\partial \hat{\phi}_i}{\partial x} \frac{\partial \hat{\phi}_j}{\partial x} \, dx \, dy, \qquad S_{ij}^{yy} = \int_{\Omega^e} \frac{\partial \hat{\phi}_i}{\partial y} \frac{\partial \hat{\phi}_j}{\partial y} \, dx \, dy \qquad (26)$$

and $N_{1i}^{\alpha}, N_{2i}^{\alpha}, \dots$, are given in Appendix B.

Note that the stiffness matrix evaluation requires the computation of the second derivatives of the (Hermite cubic) interpolation used for the transverse deflection. In the present study, we use the Lagrange linear interpolation of the geometry (i.e., the same as that used for variables u, v, ϕ_1 , and ϕ_2):

$$x = \sum_{j=1}^{n} x_j \psi_j, \qquad y = \sum_{j=1}^{n} y_j \psi_j$$
 (27)

Thus, isoparametric elements are used for (u,v,ϕ_1,ϕ_2) and the subparametric formulation is used for w. We must develop the transformation equations to numerically evaluate the stiffness coefficients. These relations can be found in Ref. 24, pp. 435–436.

The finite element based on the first-order shear deformation theory (set $\alpha=0$ in the above equations) has five degrees of freedom per node when the same degree of interpolation is used for all variables. This element is known to have "locking" problems due to inconsistencies in the modeling of

transverse shear energy, and it has been a subject of many papers in the literature. $^{4,25-30}$ The locking is avoided in most cases by using reduced integration in the numerical evaluation of element stiffnesses coming from the transverse shear energy. A consistent interpolation of the field variabiles, i.e., different or selective interpolations for w and (ϕ_1, ϕ_2) should prove to be more accurate in problems with variable coefficients. The displacement finite-element model based on the third-order theory is less sensitive to locking. 32,33

V. Numerical Results

The Lévy-type solution procedure and finite-element model developed in the previous sections are used to evaluate the natural frequencies and critical buckling loads of antisymmetric, cross-ply, rectangular laminates. The following material properties are used in the analysis: $E_1/E_2=40$, $G_{12}=G_{13}=0.6E_2$, $G_{23}=0.5E_2$, and $v_{12}=0.25$. All layers are assumed to have the same thickness and orthotropic material properties in the material principal axes. The shear correction factors $(K_{44}^2=K_{55}^2)$ for FSDT are taken to be 5/6.

In the finite-element analysis, a mesh of 2×2 quadratic elements is used for the FSDT and a 4×4 mesh of 4-node elements is used for HSDT and CPT. Half-plate models are used in the free-vibration case and full plate models are used in the stability analysis.

The effect of orthotropy and number of layers on the nondimensional fundamental frequency of simply supported square laminates (0 deg/90 deg/0 deg/...) is investigated, and the numerical results obtained using various plate theories are compared in Table 1. The results obtained by Noor^{34,35} are

based on the three-dimensional elasticity theory. The fundamental frequencies increase with increasing orthotropy (E_1/E_2) as well as number of layers. Similar results for critical buckling loads are presented in Table 2.

The effect of including transverse shear strains and boundary conditions on the fundamental frequencies of two-layer and ten-layer antisymmetric cross-ply laminates are examined, and the results are presented in Table 3. In all cases, the classical plate theory overpredicts the frequencies compared to the shear-deformation theories. Frequencies predicted by the two shear-deformation theories are very close to each other. Similar results for buckling analysis are presented in Table 4.

The effect of laminate aspect ratio on fundamental frequencies are investigated for various boundary conditions and number of layers (see Table 5). The natural frequencies increase with increasing aspect ratio and number of layers.

In all cases, the finite-element solutions are in good agreement with the analytical solutions. Of course, the finite-element model is applicable to a more general case of lamination schemes, geometry, and boundary conditions. As an example, the model is applied to the natural vibration of cantilever laminates, and the results are presented in Table 6 for various aspect ratios and side-to-thickness ratios.

VI. Summary

Exact analytical solutions and finite-element numerical solutions are developed for natural vibration and buckling of antisymmetric, cross-ply, rectangular laminates under various boundary conditions on parallel edges when the other two

Table 3 Effect of side-to-thickness ratio on the dimensionless fundamental frequencies of antisymmetric cross-ply square plates including various boundary conditions (b/a=1): $\bar{\omega}=(\omega b^2/h)(\rho/E_2)^{1/2}$

Number of layers	b/h	Theory	Type of solution	SSFF ^a	SSFS ²	SSFCa	SSSS ^a	SSSCa	SSCC ^a
2	5	HSDT	Exact FEM	6.128 6.172	6.387 6.192	6.836 6.648	9.087 9.103	10.393 10.582	11.890 12.053
2	5	FSDT	Exact FEM	5.952 5.955	6.213 6.219	6.638 6.646	8.833 8.837	9.822 9.899	10.897 10.906
2	5	CPT	Exact FEM	7.124 7.150	7.450 7.279	8.041 7.802	10.721 11.192	13.627 15.357	17.741 18.694
2	10	HSDT	Exact FEM	6.943 6.915	7.277 7.134	7.810 7.680	10.568 10.594	12.870 13.180	15.709 15.914
2	10	FSDT	Exact FEM	6.881 6.886	7.215 7.222	7.741 7.714	10.473 10.480	12.610 12.791	15.152 15.181
2	10	CPT	Exact FEM	7.267 7.262	7.636 7.345	8.228 7.821	11.154 11.383	14.223 14.828	18.543 19.053
10	5	HSDT	Exact FEM	8.155 7.989	8.288 7.998	8.966 8.694	11.673 11.664	12.514 12.633	13.568 13.710
10	5	FSDT	Exact FEM	8.139 8.143	8.264 8.270	8.919 8.925	11.644 11.647	12.197 12.239	12.923 12.928
10	5	CPT	Exact FEM	11.459 12.156	11.815 11.260	13.618 11.980	12.167 18.624	23.348 24.118	30.855 31.855
10	10	HSDT	Exact FEM	10.893 10.906	11.074 11.088	11.863 11.788	15.771 15.787	18.175 18.214	20.831 20.493
10	10	FSDT	Exact FEM	10.900 10.906	11.079 11.088	11.862 11.788	15.779 15.787	18.044 18.214	20.471 20.493
10	10	СРТ	Exact FEM	12.680 12.419	12.906 11.283	13.779 11.983	18.492 18.637	23.971 23.991	31.709 31.912

^aSee Eqs. (20-22) for the explanation of S, F, and C. For example, SSFC means: the rectangular laminate is simply-supported (SS) at y = 0 and y = b, free (F) at x = a/2, and clamped (C) at x = -a/2.

Table 4 Effect of side-to-thickness ratio on the dimensionless critical buckling loads of antisymmetric cross-ply square plates including various boundary conditions: $\tilde{N}_2 = \tilde{N}_2 b^2 / (E_2 h^3)$, $\tilde{N}_1 = 0$

Number layers	b/h	Theory	Type of solution	SSFF	SSFS	SSFC	SSSS	SSSC	SSCC
2	5	HSDT	Exact FEM	3.905 3.979	4.283 4.375	4.908 5.022	8.769 8.985	10.754 11.241	11.490 12.318
2	5	FSDT	Exact FEM	3.682 3.719	4.054 4.094	4.632 4.667	8.277 8.328	9.309 9.650	9.757 9.949
2	5	CPT	Exact FEM	5.425 5.616	6.003 6.292	6.968 7.203	12.957 14.520	21.116 23.869	31.280 37.106
2	10	HSDT	Exact FEM	4.940 5.090	5.442 5.621	6.274 6.487	11.562 12.011	17.133 18.257	21.464 24.262
2	10	FSDT	Exact FEM	4.851 4.916	5.351 5.420	6.166 6.234	11.353 11.485	16.437 18.338	20.067 21.916
2	10	CPT	Exact FEM	5.425 5.616	6.003 6.292	6.968 7.203	12.957 14.520	21.116 23.869	31.280 37.106
10	5	HSDT	Exact FEM	6.780 6.802	7.050 7.089	8.221 8.278	12.109 12.224	12.607 12.800	13.254 13.659
10	5	FSDT	Exact FEM	6.750 6.791	7.020 7.064	8.143 8.174	11.494 11.172	11.495 11.181	11.628 11.216
10	5	CPT	Exact FEM	16.426 16.457	17.023 17.141	19.389 19.422	35.232 36.384	59.288 60.406	89.770 90.833
10	10	HSDT	Exact FEM	12.077 12.248	12.506 12.699	14.351 14.568	25.423 25.828	32.885 33.662	35.376 36.657
10	10	FSDT	Exact FEM	12.092 12.226	12.524 12.661	14.358 14.480	25.450 25.647	32.614 33.970	34.837 36.129
10	10	CPT	Exact FEM	16.426 16.457	17.023 17.141	19.389 19.422	35.232 36.384	59.288 60.406	89.770 90.833

Table 5 Effect of the aspect ratio on the dimensionless fundamental frequencies of antisymmetric cross-ply square plates including various boundary conditions: b/h = 10, $\tilde{\omega} = (\omega b^2/h)(\rho/E_2)^{1/2}$

Number of layers	b/a	Theory	Type of solution	SSFF	SSFS	SSFC	SSSS	SSSC	SSCC
2	2	HSDT	Exact FEM	6.943 6.954	8.171 8.135	12.632 12.674	26.301 26.288	33.387 34.312	40.925 41.602
2	2	FSDT	Exact FEM	6.881 6.886	8.109 8.120	12.395 12.392	25.608 25.620	31.111 31.512	36.723 36.764
2	2	CPT	Exact FEM	7.267 7.318	8.677 8.702	13.915 13.959	30.468 31.312	45.554 48.880	64.832 67.652
2	3	HSDT	Exact FEM	6.943 6.963	9.387 9.434	21.675 21.836	48.704 48.582	58.836 60.621	70.380 71.508
2	3	FSDT	Exact FEM	6.881 6.886	9.319 9.333	20.779 20.786	46.360 46.377	52.295 52.770	59.293 59.328
2	3	CPT	Exact FEM	7.267 7.326	10.153 10.370	25.769 25.988	63.325 65.985	96.451 105.71	137.71 145.87
10	2	HSDT	Exact FEM	10.893 10.882	11.577 11.394	18.110 18.067	34.747 34.652	39.223 39.998	44.598 45.274
10	2	FSDT	Exact FEM	10.900 10.906	11.577 11.589	17.930 17.916	34.682 34.692	37.689 37.964	41.520 41.538
10	2	CPT	Exact FEM	12.680 12.682	13.569 12.977	22.876 22.426	52.292 52.924	79.371 81.366	113.80 115.68
10	3	HSDT	Exact FEM	10.893 10.899	12.324 12.272	28.658 28.886	57.523 57.324	63.596 65.169	71.800 72.864
10	3	FSDT	Exact FEM	10.900 10.906	12.313 12.326	27.764 27.764	56.967 56.976	58.987 59.310	63.042 63.054
10	3	CPT	Exact FEM	12.680 12.720	14.606 14.536	43.616 43.554	111.58 114.29	159.65 161.11	159.95 160.96

Table 6 Fundamental frequencies of a cantilever laminate (0 deg/90 deg) as predicted by various theories: $\tilde{\omega} = (\omega b^2/\hbar)(\rho/E_2)^{1/2}$

b/a	CP	T	FSI	PΤ	HSDT		
	b/h = 100	b/h = 10	b/h = 100	b/h = 10	b/h = 100	b/h = 10	
1	2.6285	2.6250	2.6103	2.5334	2.6378	2.5610	
2	10.5138	10.4588	10.4318	9.3501	10.5385	9.5988	
3	23.6548	23.3775	23.4354	18.8491	23.6666	19.8325	

edges are simply supported. The effects of aspect ratio, boundary conditions, side-to-thickness ratio, and material orthotropy on fundamental frequencies and critical buckling loads are investigated. The finite-element solutions are found to be in good agreement with the analytical solutions. In general, the classical plate theory overpredicts natural frequencies and buckling loads, and the difference increases with increasing side-to-thickness ratio. The analytical solutions and numerical results presented here can serve to validate other methods and finite-element models.

Appendix A: The Matrix [A] Coefficients

and

$$\begin{aligned} e_0 &= e_3 e_{28} - e_1 e_{30} \\ C_0 &= e_{12} e_{37} - e_{10} e_{39}, \qquad a_0 = -1/(C_4 e_{21} + C_{22} e_{23} + e_{25}) \\ a_1 &= C_2 e_{21} + C_{20} e_{23} + e_{22}, \qquad a_2 = C_6 e_{21} + C_{24} e_{23} + e_{24} \\ e_1 &= A_{11}, \qquad e_2 = -\beta (A_{12} + A_{66}), \qquad e_3 = B_{11} - \frac{4}{3h^2} E_{11} \\ e_4 &= \beta \left[\frac{4}{3h^2} (E_{12} + E_{66}) - B_{12} - B_{66} \right], \qquad e_5 = -\frac{4}{3h^2} E_{11} \end{aligned}$$

HSDT:

$$C_{1} = (e_{7}e_{30} - e_{3}e_{34})/e_{0}, \qquad C_{2} = (e_{2}e_{30} - e_{3}e_{29})/e_{0}$$

$$C_{3} = (e_{6}e_{30} - e_{3}e_{33})/e_{0}, \qquad C_{4} = (e_{5}e_{30} - e_{3}e_{32})/e_{0}$$

$$C_{5} = (e_{8}e_{30} - e_{3}e_{35})/e_{0}, \qquad C_{6} = (e_{4}e_{30} - e_{3}e_{31})/e_{0}$$

$$C_{7} = (e_{9}e_{39} - e_{12}e_{36})/C_{0}, \qquad C_{8} = (e_{14}e_{39} - e_{12}e_{41})/C_{0}$$

$$C_{9} = (e_{16}e_{39} - e_{12}e_{43})/C_{0}, \qquad C_{10} = (e_{13}e_{39} - e_{12}e_{40})/C_{0}$$

$$C_{11} = (e_{11}e_{39} - e_{12}e_{38})/C_{0}, \qquad C_{12} = (e_{15}e_{39} - e_{12}e_{42})/C_{0}$$

$$C_{19} = (e_{1}e_{34} - e_{7}e_{28})/e_{0}, \qquad C_{20} = (e_{1}e_{29} - e_{2}e_{28})/e_{0}$$

$$C_{21} = (e_{1}e_{33} - e_{6}e_{28})/e_{0}, \qquad C_{22} = (e_{1}e_{32} - e_{5}e_{28})/e_{0}$$

$$C_{23} = (e_{1}e_{35} - e_{8}e_{28})/e_{0}, \qquad C_{24} = (e_{1}e_{31} - e_{4}e_{28})/e_{0}$$

$$C_{25} = (e_{10}e_{36} - e_{9}e_{37})/C_{0}, \qquad C_{26} = (e_{10}e_{41} - e_{14}e_{37})/C_{0}$$

$$C_{27} = (e_{10}e_{43} - e_{16}e_{37})/C_{0}, \qquad C_{28} = (e_{10}e_{40} - e_{13}e_{37})/C_{0}$$

$$C_{29} = (e_{10}e_{38} - e_{11}e_{37})/C_{0}, \qquad C_{30} = (e_{10}e_{42} - e_{15}e_{37})/C_{0}$$

$$C_{13} = a_{0}(C_{1}e_{21} + C_{7}a_{1} + C_{25}a_{2} + C_{19}e_{23} + e_{26})$$

$$C_{14} = a_{0}(C_{8}a_{1} + C_{26}a_{2} + e_{27}), \qquad C_{15} = a_{0}(C_{9}a_{1} + C_{27}a_{2} + e_{20})$$

$$C_{16} = a_{0}(e_{18} + C_{3}e_{21} + C_{21}e_{23} + C_{10}a_{1} + C_{28}a_{2})$$

$$C_{17} = a_{0}(e_{17} + C_{5}e_{21} + C_{23}e_{23} + C_{11}a_{1} + C_{29}a_{2})$$

$$C_{18} = a_{0}(e_{19} + C_{12}a_{1} + C_{30}a_{2})$$

$$(A2)$$

$$e_{6} = \frac{4}{3h^{2}} [\beta^{2}(E_{12} + 2E_{66}) - I_{4}\omega_{m}^{2}], \qquad e_{7} = -\beta^{2}A_{66} + I_{1}\omega_{m}^{2}$$

$$e_{8} = \beta^{2} \left(\frac{4}{3h^{2}}E_{66} - B_{66}\right) + \bar{I}_{2}\omega_{m}^{2}, \qquad e_{9} = -e_{2},$$

$$e_{10} = A_{66}, \qquad e_{11} = -e_{4}, \qquad e_{12} = B_{66} - \frac{4}{3h^{2}}E_{66},$$

$$e_{13} = -\frac{4}{3h^{2}}\beta(E_{12} + 2E_{66}), \qquad e_{14} = -\beta^{2}A_{22} + I_{1}\omega_{m}^{2}$$

$$e_{15} = \beta^{2} \left(\frac{4}{3h^{2}}E_{22} - B_{22}\right) + \bar{I}_{2}\omega_{m}^{2}, \quad e_{16} = \frac{4}{3h^{2}}(\beta^{3}E_{22} - \beta I_{4}\omega_{m}^{2})$$

$$e_{17} = A_{55} - \frac{4}{h^{2}}D_{55} - \frac{4}{h^{2}}\left(D_{55} - \frac{4}{h^{2}}F_{55}\right)$$

$$+ \frac{4}{3h^{2}}\beta^{2} \left[\frac{4}{3h^{2}}(H_{12} + 2H_{66}) - (F_{12} + 2F_{66})\right] + \frac{4}{3h^{2}}\bar{I}_{5}\omega_{m}^{2}$$

$$e_{18} = A_{55} - \frac{4}{h^{2}}D_{55} - \frac{4}{h^{2}}\left(D_{55} - \frac{4}{h^{2}}F_{55}\right)$$

$$+ \left(\frac{4}{3h^{2}}\right)^{2}\beta^{2}[2H_{12} + 4H_{66}] - \bar{N}_{1} - \left(\frac{4}{3h^{2}}\right)^{2}I_{7}\omega_{m}^{2}$$

$$e_{19} = -\beta \left[A_{44} - \frac{4}{h^{2}}D_{44} - \frac{4}{h^{2}}\left(D_{44} - \frac{4}{h^{2}}F_{44}\right)\right]$$

$$+ \frac{4}{3h^{2}}\beta^{3}\left(F_{22} - \frac{4}{3h^{2}}H_{22}\right) - \frac{4}{3h^{2}}\beta\bar{I}_{5}\omega_{m}^{2}$$

(A8)

$$\begin{split} e_{20} &= -\beta^2 \Bigg[A_{44} - \frac{4}{h^2} D_{44} - \frac{4}{h^2} \Big(D_{44} - \frac{4}{h^2} F_{44} \Big) \Big] \\ &- \Big(\frac{4}{3h^2} \Big)^2 \beta^4 H_{22} + \beta^2 \bar{N}_2 + I_1 \omega_m^2 + \Big(\frac{4}{3h^2} \Big)^2 \beta^2 I_7 \omega_m^2 \\ e_{21} &= -e_5, \qquad e_{22} = e_{13}, \qquad e_{23} = \frac{4}{3h^2} \Big(F_{11} - \frac{4}{3h^2} H_{11} \Big) \\ e_{24} &= \frac{4}{3h^2} \beta \Bigg[\frac{4}{3h^2} (2H_{66} + H_{12}) - (F_{12} + 2F_{66}) \Big] \\ e_{25} &= -\left(\frac{4}{3h^3} \right)^2 H_{11} \\ e_{26} &= -e_6, \qquad e_{27} = e_{16}, \qquad e_{28} = e_3, \qquad e_{29} = e_4 \\ e_{30} &= D_{11} - \frac{8}{3h^2} F_{11} + \left(\frac{4}{3h^2} \right)^2 H_{11} \\ e_{31} &= \beta \Bigg[\frac{8}{3h^2} (F_{12} + F_{66}) - \left(\frac{4}{3h^2} \right)^2 (H_{12} + H_{66}) - D_{12} - D_{66} \Big] \\ e_{32} &= -e_{23}, \qquad e_{33} &= -e_{17}, \qquad e_{34} = e_8 \\ e_{35} &= \frac{4}{h^2} \Big(D_{55} - \frac{4}{h^2} F_{55} \Big) - \Big(A_{55} - \frac{4}{h^2} D_{55} \Big) \\ &+ \beta^2 \Bigg[\frac{8}{3h^2} F_{66} - D_{66} - \left(\frac{4}{3h^2} \right)^2 H_{66} \Big] + \bar{I}_3 \omega_m^2 \\ e_{36} &= -e_4, \qquad e_{37} = e_{12}, \qquad e_{38} &= -e_{31}, \\ e_{39} &= D_{66} - \frac{8}{3h^2} F_{66} + \left(\frac{4}{3h^2} \right)^2 H_{66} \\ e_{40} &= e_{24}, \qquad e_{41} &= e_{15} \\ e_{42} &= \frac{4}{h^2} \Big(D_{44} - \frac{4}{h^2} F_{44} \Big) - \Big(A_{44} - \frac{4}{h^2} D_{44} \Big) \\ &+ \beta^2 \Bigg[\frac{8}{3h^2} F_{22} - D_{22} - \left(\frac{4}{3h^2} \right)^2 H_{22} \Big] + \bar{I}_3 \omega_m^2 \\ e_{43} &= e_{19} \end{split} \tag{A3}$$

$$C_{17} = (e_{6}e_{17} - e_{1}e_{22})/e_{0}, \qquad C_{18} = (e_{4}e_{17} - e_{1}e_{20})/e_{0}$$

$$C_{19} = (e_{7}e_{25} - e_{8}e_{24})/C_{0}, \qquad C_{20} = (e_{7}e_{28} - e_{11}e_{24})/C_{0}$$

$$C_{21} = e_{7}e_{30}/C_{0}, \qquad C_{22} = (e_{7}e_{26} - e_{9}e_{24})/C_{0}$$

$$C_{23} = (e_{7}e_{29} - e_{12}e_{24})/C_{0}, \qquad e_{0} = e_{1}e_{19} - e_{3}e_{17}$$

$$C_{0} = e_{10}e_{24} - e_{7}e_{27} \qquad (A5)$$
and
$$e_{1} = A_{11}, \qquad e_{2} = -\beta(A_{12} + A_{66}), \qquad e_{3} = B_{11}$$

$$e_{4} = -\beta(B_{12} + B_{66}), \qquad e_{5} = -\beta^{2}A_{66} + I_{1}\omega_{m}^{2}$$

$$e_{6} = -\beta^{2}B_{66} + I_{2}\omega_{m}^{2}, \qquad e_{7} = A_{66}, \qquad e_{8} = -e_{2}$$

$$e_{9} = -e_{4}, \qquad e_{10} = B_{66}, \qquad e_{11} = -\beta^{2}A_{22} + I_{1}\omega_{m}^{2}$$

$$e_{12} = -\beta^{2}B_{22} + I_{2}\omega_{m}^{2}, \qquad e_{13} = K_{55}^{2}A_{55} - \overline{N}_{1}$$

$$e_{14} = K_{55}^{2}A_{55}, \qquad e_{15} = -\beta^{2}K_{44}^{2}A_{44} + I_{1}\omega_{m}^{2} + \beta^{2}\overline{N}_{2}$$

$$e_{16} = -\beta K_{44}^{2}A_{44}, \qquad e_{17} = e_{3}, \qquad e_{18} = e_{4}$$

$$e_{19} = D_{11}, \qquad e_{20} = -\beta(D_{11} + D_{66})$$

$$e_{21} = -\beta^{2}B_{66} + I_{2}\omega_{m}^{2}, \qquad e_{22} = -\beta^{2}D_{66} - K_{55}^{2}A_{55} + I_{3}\omega_{m}^{2}$$

$$e_{23} = -e_{14}, \qquad e_{24} = e_{10}, \qquad e_{25} = -e_{4}, \qquad e_{26} = -e_{20}$$

$$e_{27} = D_{66}, \qquad e_{28} = -\beta^{2}B_{22} + I_{2}\omega_{m}^{2}$$

$$e_{29} = -\beta^{2}D_{22} - K_{44}^{2}A_{44} + I_{3}\omega_{m}^{2}, \qquad e_{30} = e_{16}$$

$$CPT:$$

$$[A] = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ C_1 & 0 & 0 & C_2 & 0 & C_3 & 0 & C_4 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & C_5 & C_6 & 0 & C_7 & 0 & C_8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & C_9 & C_{10} & 0 & C_{11} & 0 & C_{12} & 0 \end{bmatrix}$$

$$(A7)$$

FSDT:

$$C_{1} = (e_{3}e_{21} - e_{5}e_{19})/e_{0}, \qquad C_{2} = (e_{3}e_{18} - e_{2}e_{19})/e_{0} \qquad C_{1} = -e_{2}/e_{1}, \qquad C_{2} = -e_{3}/e_{1}, \qquad C_{3} = -e_{5}/e_{1}$$

$$C_{3} = e_{3}e_{23}/e_{0}, \qquad C_{4} = (e_{3}e_{22} - e_{6}e_{19})/e_{0} \qquad C_{4} = -e_{4}/e_{1}, \qquad C_{5} = -e_{6}/e_{7}$$

$$C_{5} = (e_{3}e_{20} - e_{4}e_{19})/e_{0}, \qquad C_{6} = (e_{8}e_{27} - e_{10}e_{25})/C_{0} \qquad C_{6} = -e_{8}/e_{7}, \qquad C_{7} = -e_{10}/e_{7}, \qquad C_{8} = -e_{9}/e_{7}$$

$$C_{7} = (e_{11}e_{27} - e_{10}e_{28})/C_{0}, \qquad C_{8} = -e_{10}e_{30}/C_{0} \qquad C_{9} = -e_{21}/e_{18}, \qquad C_{10} = -e_{22}/e_{18}$$

$$C_{9} = (e_{9}e_{27} - e_{10}e_{26})/C_{0}, \qquad C_{10} = (e_{12}e_{27} - e_{10}e_{29})/C_{0} \qquad C_{11} = -e_{20}/e_{18}, \qquad C_{12} = -e_{19}/e_{18} \qquad (A$$

$$C_{11} = -e_{15}/e_{13} \qquad \text{and}$$

$$C_{12} = -e_{14}/e_{13}, \qquad C_{13} = -e_{16}/e_{13}, \qquad C_{14} = (e_{5}e_{17} - e_{1}e_{21})/e_{0} \qquad e_{1} = A_{11}, \qquad e_{2} = -\beta^{2}A_{66} + I_{1}\omega_{m}^{2}, \qquad e_{3} = -\beta(A_{12} + A_{66})$$

$$C_{15} = (e_{2}e_{17} - e_{1}e_{18})/e_{0}, \qquad C_{16} = -e_{1}e_{23}/e_{0} \qquad e_{4} = -B_{11}, \qquad e_{5} = \beta^{2}(B_{12} + 2B_{66}) - I_{2}\omega_{m}^{2}$$

$$\begin{split} e_6 &= -e_3, & e_7 &= A_{66}, & e_8 &= -\beta^2 A_{22} + I_1 \omega_m^2 \\ e_9 &= -\beta (B_{12} + 2B_{66}), & e_{10} &= \beta^3 B_{22} - \beta I_2 \omega_m^2, & e_{11} &= D_{11} \\ e_{12} &= -2\beta^2 (D_{12} + 2D_{66}) + I_3 \omega_m^2 + \bar{N}_1 \\ e_{13} &= \beta^4 D_{22} - I_1 \omega_m^2 - \beta^2 I_3 \omega_m^2 - \beta^2 \bar{N}_2, & e_{14} &= e_4, & e_{15} &= e_5 \\ e_{16} &= -e_9, & e_{17} &= -e_{10}, & e_{18} &= e_{11} - e_4 e_{14}/e_1 \\ e_{19} &= e_{12} - e_5 e_{14}/e_1 - e_9 e_{16}/e_7 + e_3 e_9 e_{14}/(e_1 e_7) \\ e_{20} &= e_{13} - e_{10} e_{16}/e_7 + e_3 e_{10} e_{14}/(e_1 e_7) \\ e_{21} &= e_{15} - e_2 e_{14}/e_1 - e_6 e_{16}/e_7 + e_3 e_6 e_{14}/(e_1 e_7) \\ e_{22} &= e_{17} - e_8 e_{16}/e_7 + e_3 e_8 e_{14}/(e_1 e_7) \end{split}$$

Appendix B: Finite-Element Stiffness Coefficients

$$\begin{split} N^1_{ij} &= A_{11} \frac{\partial \psi_j}{\partial x} + A_{16} \frac{\partial \psi_j}{\partial y}, \qquad N^2_{ij} &= A_{16} \frac{\partial \psi_j}{\partial x} + A_{12} \frac{\partial \psi_j}{\partial y} \\ N^3_{ij} &= -c_2 \left(E_{11} \frac{\partial^2 \hat{\phi}_j}{\partial x^2} + 2 E_{16} \frac{\partial^2 \hat{\phi}_j}{\partial x} + E_{12} \frac{\partial^2 \hat{\phi}_j}{\partial y^2} \right) \\ N^4_{ij} &= \hat{B}_{11} \frac{\partial \psi_j}{\partial x} + \hat{B}_{16} \frac{\partial \psi_j}{\partial y}, \qquad N^5_{ij} &= \hat{B}_{12} \frac{\partial \psi_j}{\partial y} + \hat{B}_{16} \frac{\partial \psi_j}{\partial x} \\ N^1_{ij} &= A_{16} \frac{\partial \psi_j}{\partial x} + A_{66} \frac{\partial \psi_j}{\partial y}, \qquad N^5_{ij} &= A_{66} \frac{\partial \psi_j}{\partial x} + A_{26} \frac{\partial \psi_j}{\partial y} \\ N^3_{ij} &= -c_2 \left(E_{16} \frac{\partial^2 \hat{\phi}_j}{\partial x^2} + 2 E_{66} \frac{\partial^2 \hat{\phi}_j}{\partial x \partial y} + E_{26} \frac{\partial^2 \hat{\phi}_j}{\partial y^2} \right) \\ N^4_{6j} &= \hat{B}_{16} \frac{\partial \psi_j}{\partial x} + \hat{B}_{66} \frac{\partial \psi_j}{\partial y}, \qquad N^5_{6j} &= \hat{B}_{26} \frac{\partial \psi_j}{\partial y} + \hat{B}_{66} \frac{\partial \psi_j}{\partial x} \\ N^1_{2j} &= A_{12} \frac{\partial \psi_j}{\partial x} + A_{26} \frac{\partial \psi_j}{\partial y}, \qquad N^5_{2j} &= A_{26} \frac{\partial \psi_j}{\partial y} + \hat{B}_{66} \frac{\partial \psi_j}{\partial x} \\ N^3_{2j} &= -c_2 \left(E_{12} \frac{\partial^2 \hat{\phi}_j}{\partial x^2} + 2 E_{26} \frac{\partial^2 \hat{\phi}_j}{\partial x} + E_{22} \frac{\partial^2 \hat{\phi}_j}{\partial y} \right) \\ N^4_{2j} &= \hat{B}_{12} \frac{\partial \psi_j}{\partial x} + \hat{B}_{26} \frac{\partial \psi_j}{\partial y}, \qquad N^5_{2j} &= \hat{B}_{26} \frac{\partial \psi_j}{\partial y} + \hat{B}_{26} \frac{\partial \psi_j}{\partial x} \\ N^3_{1j} &= -c_2 \left(\hat{F}_{11} \frac{\partial^2 \hat{\phi}_j}{\partial x} + \hat{F}_{16} \frac{\partial^2 \hat{\phi}_j}{\partial y} \right), \qquad \hat{M}^2_{2j} &= \hat{B}_{16} \frac{\partial \psi_j}{\partial x} + \hat{B}_{12} \frac{\partial \psi_j}{\partial y} \\ \hat{M}^3_{1j} &= -c_2 \left(\hat{F}_{11} \frac{\partial^2 \hat{\phi}_j}{\partial x^2} + 2 \hat{F}_{16} \frac{\partial^2 \hat{\phi}_j}{\partial x} + \hat{F}_{12} \frac{\partial^2 \hat{\phi}_j}{\partial x} \right) \\ \hat{M}^4_{1j} &= \hat{B}_{16} \frac{\partial \psi_j}{\partial x} + \hat{B}_{16} \frac{\partial \psi_j}{\partial y}, \qquad \hat{M}^5_{1j} &= \hat{D}_{12} \frac{\partial \psi_j}{\partial y} + \hat{D}_{16} \frac{\partial \psi_j}{\partial x} \\ \hat{M}^3_{6j} &= -c_2 \left(\hat{F}_{16} \frac{\partial^2 \hat{\phi}_j}{\partial x^2} + 2 \hat{F}_{66} \frac{\partial^2 \hat{\phi}_j}{\partial y} + \hat{F}_{26} \frac{\partial^2 \hat{\phi}_j}{\partial y} \right) \\ \hat{M}^4_{6j} &= \hat{B}_{16} \frac{\partial \psi_j}{\partial x} + \hat{B}_{26} \frac{\partial \psi_j}{\partial y}, \qquad \hat{M}^5_{6j} &= \hat{D}_{26} \frac{\partial \psi_j}{\partial y} + \hat{D}_{66} \frac{\partial \psi_j}{\partial x} \\ \hat{M}^2_{2j} &= \hat{B}_{12} \frac{\partial \psi_j}{\partial x} + \hat{B}_{26} \frac{\partial \psi_j}{\partial y}, \qquad \hat{M}^5_{6j} &= \hat{D}_{26} \frac{\partial \psi_j}{\partial y} + \hat{D}_{66} \frac{\partial \psi_j}{\partial x} \\ \hat{M}^2_{2j} &= -c_2 \left(\hat{F}_{12} \frac{\partial^2 \hat{\phi}_j}{\partial x} + \hat{F}_{26} \frac{\partial^2 \hat{\phi}_j}{\partial y} \right) \\ \hat{M}^2_{2j} &= \hat{D}_{12} \frac{\partial \psi_j}{\partial x} + \hat{D}_{26} \frac{\partial \psi_j}{\partial y}, \qquad$$

$$\begin{split} P_{1j}^{3} &= -c_{2} \left(H_{11} \frac{\partial^{2} \hat{\phi}_{j}}{\partial x^{2}} + 2 H_{16} \frac{\partial^{2} \hat{\phi}_{j}}{\partial x \partial y} + H_{12} \frac{\partial^{2} \hat{\phi}_{j}}{\partial y^{2}} \right) \\ P_{1j}^{4} &= \hat{F}_{11} \frac{\partial \psi_{j}}{\partial x} + \hat{F}_{16} \frac{\partial \psi_{j}}{\partial y}, \qquad P_{1j}^{5} &= \hat{F}_{12} \frac{\partial \psi_{j}}{\partial x} + \hat{F}_{16} \frac{\partial \psi_{j}}{\partial x} \\ P_{2j}^{1} &= E_{12} \frac{\partial \psi_{j}}{\partial x} + E_{26} \frac{\partial \psi_{j}}{\partial y}, \qquad P_{2j}^{2} &= E_{22} \frac{\partial \psi_{j}}{\partial y} + E_{26} \frac{\partial \psi_{j}}{\partial x} \\ P_{2j}^{3} &= -c_{2} \left(H_{21} \frac{\partial^{2} \hat{\phi}_{j}}{\partial x^{2}} + 2 H_{26} \frac{\partial^{2} \hat{\phi}_{j}}{\partial x \partial y} + H_{22} \frac{\partial^{2} \hat{\phi}_{j}}{\partial y^{2}} \right) \\ P_{2j}^{4} &= \hat{F}_{12} \frac{\partial \psi_{j}}{\partial x} + \hat{F}_{26} \frac{\partial \psi_{j}}{\partial y}, \qquad P_{2j}^{5} &= \hat{F}_{22} \frac{\partial \psi_{j}}{\partial y} + \hat{F}_{26} \frac{\partial \psi_{j}}{\partial x} \\ P_{6j}^{2} &= E_{16} \frac{\partial \psi_{j}}{\partial x} + E_{66} \frac{\partial \psi_{j}}{\partial y}, \qquad P_{6j}^{5} &= E_{26} \frac{\partial \psi_{j}}{\partial y} + E_{66} \frac{\partial \psi_{j}}{\partial x} \\ P_{6j}^{2} &= -c_{2} \left(H_{16} \frac{\partial^{2} \hat{\phi}_{j}}{\partial x^{2}} + 2 H_{66} \frac{\partial^{2} \hat{\phi}_{j}}{\partial x^{2}} + H_{26} \frac{\partial^{2} \hat{\phi}_{j}}{\partial y} \right) \\ P_{6j}^{4} &= \hat{F}_{16} \frac{\partial \psi_{j}}{\partial x} + \hat{F}_{66} \frac{\partial \psi_{j}}{\partial y}, \qquad P_{6j}^{5} &= \hat{F}_{26} \frac{\partial \psi_{j}}{\partial y} + \hat{F}_{66} \frac{\partial \psi_{j}}{\partial x} \\ D_{ij} &= \hat{D}_{ij} - c_{2} \hat{F}_{ij}, \qquad i, j = 1, 2, 6 \\ N_{1j}^{4} &= \hat{B}_{11} \frac{\partial \psi_{j}}{\partial x} + \hat{B}_{16} \frac{\partial \psi_{j}}{\partial y}, \qquad N_{1j}^{5} &= \hat{B}_{12} \frac{\partial \psi_{j}}{\partial y} + \hat{B}_{16} \frac{\partial \psi_{j}}{\partial x} \\ N_{2j}^{4} &= \hat{B}_{12} \frac{\partial \psi_{j}}{\partial x} + \hat{B}_{66} \frac{\partial \psi_{j}}{\partial y}, \qquad N_{2j}^{5} &= \hat{B}_{22} \frac{\partial \psi_{j}}{\partial y} + \hat{B}_{26} \frac{\partial \psi_{j}}{\partial x} \\ N_{6j}^{4} &= \hat{B}_{16} \frac{\partial \psi_{j}}{\partial x} + \hat{B}_{16} \frac{\partial \psi_{j}}{\partial y}, \qquad N_{5j}^{5} &= \hat{B}_{26} \frac{\partial \psi_{j}}{\partial y} + \hat{B}_{16} \frac{\partial \psi_{j}}{\partial x} \\ \hat{M}_{1j}^{4} &= \bar{D}_{11} \frac{\partial \psi_{j}}{\partial x} + \bar{D}_{16} \frac{\partial \psi_{j}}{\partial y}, \qquad \hat{M}_{1j}^{5} &= \bar{D}_{12} \frac{\partial \psi_{j}}{\partial y} + \bar{D}_{16} \frac{\partial \psi_{j}}{\partial x} \\ \hat{M}_{4j}^{4} &= \bar{D}_{11} \frac{\partial \psi_{j}}{\partial x} + \bar{D}_{66} \frac{\partial \psi_{j}}{\partial y}, \qquad \hat{M}_{5j}^{5} &= \bar{D}_{22} \frac{\partial \psi_{j}}{\partial y} + \bar{D}_{26} \frac{\partial \psi_{j}}{\partial x} \\ \hat{Q}_{1j}^{3} &= \bar{A}_{45} \frac{\partial \hat{\phi}_{j}}{\partial y} + \bar{A}_{55} \frac{\partial \hat{\phi}_{j}}{\partial x}, \qquad \hat{Q}_{2j}^{3} &= \bar{A}_{44} \frac{\partial \hat{\phi}_{j}}{\partial y} + \bar{A}_{45} \frac{\partial \hat{\phi}_{j}}{\partial x} \\ \hat{Q}_{2j}^{4} &= \bar{A$$

References

¹Reddy, J. N., Energy and Variational Methods in Applied Mechanics, Wiley, New York, 1984.

²Reddy, J. N., "Finite-Element Modeling of Layered, Anisotropic Composite Plates and Shells: A Review of Recent Research," *Shock and Vibration Digest*, Vol. 13, 1981, pp. 3-12.

³Reddy, J. N., "A Review of the Literature on Finite-Element Modeling of Laminated Composite Plates," Shock and Vibration Digest, Vol. 17, 1985, pp. 3-8.

⁴Reddy, J. N. and Chao, W. C., "A Comparison of Closed Form and Finite-Element Solutions of Thick Laminated Anisotropic Rectangular Plates," *Nuclear Engineering and Design*, Vol. 64, 1981, pp. 153-167.

pp. 153-167.

SReddy, J. N., "A Simple Higher-Order Theory for Laminated Composite Plates," *Journal of Applied Mechanics*, Vol. 51, 1984, pp. 745-752.

⁶Reddy, J. N., "A Refined Nonlinear Theory of Plates with Transverse Shear Deformation," *International Journal of Solids and Structures*, Vol. 20, 1984, pp. 881-896.

⁷Reddy, J. N. and Phan, N. D., "Stability and Vibration of Isotropic, Orthotropic, and Laminated Plates According to a Higher-Order Deformation Theory," *Journal of Sound and Vibration*, Vol. 98, No. 2, 1985, pp. 157–170.

⁸Whitney, J. M. and Pagano. N. J., "Shear Deformation in Heterogeneous Anisotropic Plates," ASME Journal of Applied Mechanics, Vol. 37, 1970, pp. 1031–1036.

⁹Pagano, N. J., "Exact Solutions for Composite Laminates in Cylindrical Bending," *Journal of Composite Materials*, Vol. 3, No. 3, 1969, pp. 398-411.

¹⁰Whitney, J. M., "The Effect of Transverse Shear Deformation on the Bending of Laminated Plates," *Journal of Composite Materials*,

Vol. 3, No. 3, 1969, pp. 534-547.

¹¹Bert, C. W. and Chen, T. L. C., "Effect of Shear Deformation on Vibration of Antisymmetric Angle-Ply Laminated Rectangular Plates," *International Journal of Solids and Structures*, Vol. 14, 1978, pp. 465–473.

¹²Khdeir, A. A. and Reddy, J. N., "Dynamic Response of Antisymmetric Angle-Ply Laminated Plates Subjected to Arbitrary Loading," *Journal of Sound and Vibration*, Vol. 126, 1988, pp. 437–445.

¹³Reddy, J. N., "A Penalty Plate-Bending Element for the Analysis of Laminated Anisotropic Plates," *International Journal of Numerical Methods in Engineering*, Vol. 15, 1980, pp. 1187–1206.

¹⁴Reddy, J. N. and Hsu, Y. S., "Effects of Shear Deformation and Anisotropy on the Thermal Bending of Layered Composite Plates," *Journal of Thermal Stresses*, Vol. 3, 1980, pp. 475-493.

¹⁵Reddy, J. N., "Dynamic (Transient) Analysis of Layered Anisotropic Composite-Material Plates," *International Journal of Numerical Methods in Engineering*, Vol. 19, 1983, pp. 237–255.

¹⁶Reddy, J. N., "Geometrically Nonlinear Transient Analysis of Laminated Composite Plates," *AIAA Journal*, Vol. 21, April 1983, pp. 621–629.

¹⁷Reddy, J. N., "On Mixed Finite-Element Formulations of a Higher-Order Theory of Composite Laminates," *Finite Element Methods for Plate and Shell Structures*, edited by T. J. R. Hughes and E. Hinton, Pineridge Press, U.K., 1986, pp. 31–57.

¹⁸Putcha, N. S. and Reddy, J. N., "A Refined Mixed Shear Flexible Finite Element for the Nonlinear Analysis of Laminated Plates," *Computers and Structures*, Vol. 22, No. 2, 1986, pp. 529–538.

¹⁹Putcha, N. S. and Reddy, J. N., "Stability and Natural Vibration Analysis of Laminated Plates by Using a Mixed Element Based on a Refined Plate Theory," *Journal of Sound and Vibration*, Vol. 104, No. 2, 1986, pp. 285–300.

²⁰Khdeir, A. A., Reddy, J. N., and Librescu, L., "Analytical Solutions of a Refined Shear-Deformation Theory for Rectangular Composite Plates," *International Journal of Solids and Structures*, Vol. 23, 1987, pp. 1447-1463.

²¹Franklin, J. N., *Matrix Theory*, Prentice-Hall, Englewood Cliffs, NJ, 1968.

²²Brogan, W. L., *Modern Control Theory*, Prentice-Hall, Englewood Cliffs, NJ, 1985.

²³Reddy, J. N., An Introduction to the Finite-Element Method, McGraw-Hill. New York, 1984.

²⁴Reddy, J. N., Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill, New York, 1986.

²⁵Fried, I, "Shear in C⁰ and C¹ Plate Bending Elements," *International Journal of Solids and Structures*, Vol. 9, No. 4, 1963, pp. 449–460.

²⁶Wempner, G., Oden, J. T., and Kross, D. A., "Finite-Element Analysis of Thin Shells." *Proceedings of the ASCE, Journal of Engineering Mechanics Division*, Vol. 95, 1968, pp. 1273–1294.

²⁷Zienkiewicz, O. C., Taylor, R. L., and Too, J. M., "Reduced Integration Techniques in General Analysis of Plates and Shells," *International Journal of Numerical Methods in Engineering*, Vol. 3, 1971, pp. 275–290.

²⁸Zienkiewicz, O. C. and Hinton, E., "Reduced Integration, Function Smoothing, and Nonconformity in Finite-Element Analysis," *Journal of the Franklin Institute*, Vol. 302, 1976, pp. 443–461.

²⁹Reddy, J. N., "Simple Finite Elements with Relaxed Continuity for Nonlinear Analysis of Plates," *Finite-Element Methods in Engineering*, edited by A. P. Kabaila and V. A. Pulmano, University of New South Wales, Australia, 1979, pp. 265–281.

³⁰Belytschko, T., Tsay, C. S., and Liu, W. K., "A Stabilization Matrix for the Bi-Linear Mindlin Plate Element," *Computer Methods in Applied Mechanics Engineering*, Vol. 29, 1981, pp. 313–327.

³¹Somashekhar, B. R., Prathap, G., and Ramesh Babu, C., "A Field-Consistent, Four-Noded, Laminated, Anisotropic Plate/Shell Element," *Computers and Structures*, Vol. 25, No. 3, 1987, pp. 345–353.

³²Phan, N. D. and Reddy, J. N., "Analysis of Laminated Composite Plates Using a Higher-Order Shear-Deformation Theory," *International Journal of Numerical Methods in Engineering*, Vol. 12, 1985, pp. 2201–2219.

³³Heyliger, P. R. and Reddy, J. N., "A Higher-Order Beam Finite Element for Bending and Vibration Problems," *Journal of Sound and Vibration*, Vol. 126, No. 2, 1988, pp. 2531–2546.

³⁴Noor, A. K., "Free Vibrations of Multilayered Composite Plates," *AIAA Journal*, Vol. 11, 1973, pp. 1038–1039.

³⁵Noor, A. K., "Stability of Multilayered Composite Plates," *Fibre Science and Technology*, Vol. 8, No. 2, 1975, pp. 81–89.